Dear ACM/SIGDA members,

We are excited to present to you March E-Newsletter. We encourage you to invite your students and colleagues to be a part of the SIGDA newsletter. The newsletter covers a wide range of information from the upcoming conferences to technical news and activities of our community. Get involved and contact us if you want to contribute articles or announcements.

The newsletter is evolving. Please let us know what you think.

Happy reading!

Debjit Sinha, Keni Qiu,
Editors-in-Chief,
SIGDA E-News

Messages from the EiCs

SIGDA News

(1) U.S. Chops Russia’s Access to Integrated Circuits
The U.S. government is tightening controls on the semiconductor supply chain to restrict Russian access to chip technology used in military equipment, in response to Russia’s invasion of Ukraine.

(2) Google AI Boosts Plasma Control for Fusion Energy
Google has applied AI in an effort to manage plasma within a nuclear fusion reactor. DeepMind Technologies, Google's British AI subsidiary, used its machine learning expertise to manage a tokamak, a circular nuclear fusion reactor, in partnership with EPFL's Swiss Plasma Center (École Polytechnique Fédérale de Lausanne). The findings, published in the journal Nature, may provide new avenues for developing fusion as a sustainable energy source.

(3) Intel Will Rely on TSMC for its Rebound
Intel is increasing its reliance on erstwhile rival Taiwan Semiconductor Manufacturing Co. (TSMC) in its attempt to boost sales and eventually regain dominance as the world leader in manufacturing scale and chip process technology.

(4) Bosch Ups Investments in Reutlingen, Dresden Fabs
Addressing persistent chip shortages, Bosch announced plans to invest an additional $296 million to expand its semiconductor manufacturing capacity. The investment follows the German company’s previously pledged investments aimed at current...
expansion efforts as demand increases for its MEMS and other devices.

(5) **AI Accelerators Enter IoT SoCs**

Silicon Labs’ latest families of wireless-enabled SoCs for IoT applications for the first time include a hardware AI/ML accelerator. The upgrade is indicative of the growing popularity of AI/ML techniques for a variety of IoT markets, including smart home, medical and industrial. Dedicated AI/ML hardware on-chip improves power consumption, critical to many IoT applications, even bringing AI/ML within reach for more power-sensitive IoT applications.

(6) **Taking a RISC: Expanding Chip Options**

After almost two years, the pandemic is still affecting many industries. The initial “stay home” impact of Covid hit air travel, hotels, entertainment, retail and other labor-intensive sectors such as manufacturing. Semiconductor manufacturing has been especially hard hit, leading to a well-publicized shortage of semiconductor chips, particularly in the automotive industry. A study from 2021 pegged the automotive industry’s lost revenue from the chip shortage at $210 billion.

What Is

What is Hardware Accelerator and Neural Network Co-Design?

Contributing authors: Yi Sheng¹, Lei Yang², Weiwen Jiang¹, Yiyu Shi³, and Jingtong Hu⁴

¹George Mason University, ²University of New Mexico, ³University of Notre Dame, ⁴University of Pittsburgh

Editors: Muhammad Shafique and Xun Jiao

Machine learning has been achieving great success for various tasks including image classification, image segmentation, and language modeling. However, most models are designed with the aim of maximizing software performance only (e.g., network accuracy) and do not take into consideration the hardware devices that will be finally used to implement the neural network. This will potentially
lead to excessive latencies beyond specifications, rendering the resulting architectures useless. To address these issues, co-design is presented as a method to solve this problem.

On the software side, Neural Architecture Search (NAS) has become an important tool to design network architectures. It formulates the search space with the neural architecture hyperparameters, such as the number of channels, the kernel size, and what kind of neural operators to be used in each layer. On the hardware size, there are multiple computing platforms that can accelerate the neural networks, such as GPU, FPGA, Computing-in-Memory, and even Quantum computing. Target a computing platform, previous research efforts design dedicated accelerators for neural networks.

To introduce hardware into the AI system optimization loop, it seems straightforward to simply include an additional metric for the hardware in existing frameworks to describe the latency of a neural architecture on the target accelerator, such as FPGA. However, how to obtain such an evaluation metric is non-trivial. For one thing, the synthesis and implantation have a high overhead in time. What’s worse, like the design flexibility of neural networks, the hardware accelerator also has design flexibilities, such as loop optimization settings.

The neural network and hardware accelerator co-design emerge to solve such a problem. It integrates the search space of hardware design, along with the search space of neural architecture, and an optimizer (e.g., meta-heuristic, reinforcement learning) can be applied to simultaneously explore these two coupled design spaces. FNAS, the first framework to support Hardware/Software Co-Exploration of Neural Architectures was proposed [1,2]. Works [3,4] propose tools for IoT and Autonomous systems. All these works target FPGA platforms. Followed by these works, a series of works targeting different computing platforms were proposed, including mobile platforms [5], Network-on-Chip [6], ASICs [7], and Computing-in-Memory [8]. It has also been extended to support different applications, such as medical images [9,10].

In summary, hardware and machine learning co-design are to find the optimal architecture having the maximized accuracy and satisfying the hardware requirements on target hardware devices.

References

Pingqiang Zhou,
AE for Awards
Xun Jiao,
AE for What is
Muhammad Shafique,
AE for What is
Rajsaktish Sankaranarayanan,
AE for Researcher spotlight
Xin Zhao,
AE for Paper submission
Ying Wang,
AE for Technical activities

Paper Deadlines

ISLPED’21 – ACM/IEEE Int’l Symposium on Low Power Electronics and Design
Boston University, Boston, MA (Hybrid)
Deadline: March 18, 2022
(Abstract due: March 11, 2022)
Aug 1-3, 2022
http://www.islped.org

MDTS’22 – IEEE Microelectronics Design & Test Symposium
Virtual
Deadline: March 21, 2022
May 23-26, 2022
http://natw.ieee.org

ISVLSI’22 – IEEE Computer Society Annual Symposium on VLSI
Cyprus
Deadline: Mar 25, 2022
July 4-6, 2022
http://www.ieee-isvlsi.org

Who’s Who

Xiaoming Chen
Associate Professor
Institute of Computing Technology, Chinese Academy of Sciences
Email: chenxiaoming@ict.ac.cn
Personal webpage: http://people.ucas.edu.cn/~chenxm
Research interests: EDA and computer architecture

Who’s Who AEs:

Americas:

Yi-Chung Chen,
Tennessee State University
Email: ychen@tnstate.edu
Webpage https://yichungchen84.github.io/

Asia and Oceania:

Bei-Yu,
The Chinese University of Hong Kong
Email: byu@cse.cuhk.edu.hk
Webpage http://www.cse.cuhk.edu.hk/~byu/

Europe and Africa:

Hussam Amrouch,
University of Stuttgart
Email: amrouch@iti.uni-stuttgart.de
Webpage: https://www.it.uni-stuttgart.de/en/institute/team/Amrouch/

Upcoming Conferences

DATE’22 - Design Automation and Test in Europe
Antwerp, Belgium, and online
Mar 14-23, 2022
http://www.date-conference.com

ISPD’22 – ACM Int’l Symposium on Physical Design
Banff, Alberta, Canada
Mar 27 - 30, 2022
http://www.ispd.cc

ISQED’22 - Int’l Symposium on Quality Electronic Design
California
April 6-8, 2022
http://www.isqed.org

RTAS’22 - IEEE Real-Time and Embedded Technology and Applications Symposium
Milano, Italy
May 4-6, 2022
http://2022.rtas.org

FCCM’22 - IEEE International Symposium On Field-Programmable Custom Computing Machines
New York
May 15–18, 2022
https://www.fccm.org/

ISCAS’22 – IEEE Int’l Symposium on Circuits and Systems
Austin, TX
May 28 - June 1, 2022
http://iscas2022.org
GLSVLSI’22 – ACM Great Lakes Symposium on VLSI
Orange County, CA
June 6-8, 2022
http://www.glsvlsi.org

ISCA’22 – Int’l Symposium on Computer Architecture
New York City, USA
June 11-15, 2022
https://iscaconf.org/isca2022

HiPEAC’22: Int’l Conference on High Performance Embedded Architectures & Compilers
Budapest, Hungary
June 20-22, 2022
https://www.hipeac.net/2022/budapest

HOST’22 – IEEE Int’l Symposium on Hardware-Oriented Security and Trust
Washington DC
Deadline: May 11, 2021 (Abstracts due: Apr 27, 2021)
June 27-30, 2022
http://www.hostsymposium.org

DAC’22 – Design Automation Conference
San Francisco, CA
July 10-14, 2022
http://www.dac.com/

Notice to authors

By submitting your article for distribution in this Special Interest Group publication, you hereby grant to ACM the following non-exclusive, perpetual, worldwide rights: to publish in print on condition of acceptance by the editor; to digitize and post your article in the electronic version of this publication; to include the article in the ACM Digital Library and in any Digital Library related services; and to allow users to make a personal copy of the article for noncommercial, educational or research purposes. However, as a contributing author, you retain copyright to your article and ACM will refer requests for republication directly to you.

This ACM/SIGDA E-NEWSLETTER is being sent to all persons on the ACM/SIGDA mailing list. To unsubscribe, send an email to listserv@listserv.acm.org with “signoff sigda-announce” (no quotes) in the body of the message. Please make sure to send your request from the same email as the one by which you are subscribed to the list.

To renew your ACM SIGDA membership, please visit http://www.acm.org/renew or call between the hours of 8:30am to 4:30pm EST at +1-212-626-0500 (Global), or 1-800-342-6626 (US and Canada). For any questions, contact acmhelp@acm.org.